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Abstract

The emerging Bicycle Sharing System (BSS) provides a new social microscope that allows

us to “photograph” the main aspects of the society and to create a comprehensive picture of

human mobility behavior in this new medium. BSS has been deployed in many major cities

around the world as a short-distance trip supplement for public transportations and private

vehicles. A unique value of the bike flow data generated by these BSSs is to understand the

human mobility in a short-distance trip. This understanding of the population on short-dis-

tance trip is lacking, limiting our capacity in management and operation of BSSs. Many

existing operations research and management methods for BSS impose assumptions that

emphasize statistical simplicity and homogeneity. Therefore, a deep understanding of the

statistical patterns embedded in the bike flow data is an urgent and overriding issue to inform

decision-makings for a variety of problems including traffic prediction, station placement,

bike reallocation, and anomaly detection. In this paper, we aim to conduct a comprehensive

analysis of the bike flow data using two large datasets collected in Chicago and Hangzhou

over months. Our analysis reveals intrinsic structures of the bike flow data and regularities

in both spatial and temporal scales such as a community structure and a taxonomy of the

eigen-bike-flows.

Introduction

Understanding human mobility pattern is a longstanding scientific pursuit of mankind [1–5].

Many new data resource, such as GPS trajectory [6–8] and mobile phone data [3, 9, 10], are

nowadays powerful social microscopes that bring new opportunities for us to study human

mobility in new mediums, allowing to “photograph” the main aspects of the society and to cre-

ate a comprehensive picture of human mobility behavior. Recently, the Bicycle Sharing System

(BSS) has been spreading over 1,000 cities around the world [11] as a powerful approach to

improve the first/last mile connection to other transportations. Comparing with the first-gen-

eration BSS such as the White Bicycle Plan deployed in Amsterdam in 1960s, the third genera-

tion BSS highlights the integration of information technology that enables users to borrow
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bike from any station and return the bike to any station in a city. As nowadays the trips could

be automatically recorded, this data provide a great opportunity to understand the human

mobility in a short-distance trip, which could lead to better management and operation of

BSSs in traffic prediction [12, 13], station placement [14–16], usage pattern analysis [17, 18],

bike reallocation [19, 20], and inventory management [21, 22], all are crucial aspects to better

manage BSSs to meet the population’s dynamic needs.

Generally, there are two different schools of approaches to analyze the data of BSS. One

considers individual’s trip as a basic study object. For example, to provide an efficient service

schedule for bike reallocation, Zhang et al. [18] considered a trip destination and duration pre-

diction model on the individual level. Chen et al. [14] formulated the bike station placement

issue as a bike trip demand prediction problem. Zhang and Yu [12] studied a trip route plan-

ning problem for individuals. Studying one trip information leads to analytical tractability,

however, methodologies developed from this perspective would find limitations when consid-

ering decision-makings on the system level involving all stations and all users over time. Thus,

another type of approaches aggregate individual’s trips in a time window (commonly refereed

as bike flows, as a bike flow is the collection of all trips from an ingress station to an egress sta-

tion in a time window). For instances, Li et al. [13] provided a hierarchical prediction model to

predict the bike flows that will be rent from/returned to each station in a future period so that

reallocation of imbalance bikes can be executed in advance. Etienne and Latifa [17] proposed a

model-based clustering algorithm to classify bike stations for efficient management.

In this paper, we focus on the bike flow data as it provides system-level information. Com-

paring with other existing works that analyzed the bike flow data, we notice that most of the

existing works largely focus on prediction using the bike flow data rather than inquiring the

data for extracting system-level statistical patterns. Probably because of this, none of them

aimed to conduct a delicate analysis of the variation structure in the bike flow data. On the

other hand, a series of challenges arise for analyzing the bike flow data. First, it has been found

that the bike flow data is very noisy, showing an intrinsic uncertainty structure in both spatial

and temporal domains. This often raises up the concern of how much regularity (which then

determines predictability) is embedded in the BSS data as the bikes are shared by massive

users all over the city, not to mention other uncontrollable conditions such as weather, trans-

portation infrastructure, daily transportation conditions, demographics, and geographical dis-

parities. Second, speaking of the bike flow data as a statistical object, significant dependence

has been observed among the bike flows. The dependence makes the analysis of bike flow data

difficult since many classical models assume independent assumption. Third, bike flows have a

high-dimensional structure. Consider a BSS with N bike stations, there are O(N2) bike flows.

The high dimensionality and dependency of the bike flows present major difficulties for statis-

tical analysis.

To overcome the aforementioned challenges, we realize that a crucial step is to decide on

what spatial scale the data should be analyzed. Solid evidences are identified in our study that

we should first use clustering approach to detect the community structure among stations, and

then, build the analysis on these clusters rather than on individual stations. By aggregation of

the bike flows in or between detected communities (called as aggregate bike flows (ABFs)), not

only the number of bike flows is reduced into a manageable size, but also the statistical regular-

ity embedded in the bike flow data is sharpened which can be statistically articulated by the

Principal Component Analysis (PCA). Both hierarchical clustering and PCA are not model-

based methods, so they do not rely on the independent assumption of bike flows. In this paper,

we show that this assembly of statistical analysis pipeline could reveal interesting city-wide sta-

tistical patterns on both datasets from Chicago and Hangzhou. Note that, in this paper, we use
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lower-case letters, e.g., x, to represent scalars, bold-face lower-case letters, e.g., x, to represent

vectors, and bold-face upper-case letters, e.g., X, to represent matrices.

Results

Data description

The two datasets used in this analysis were provided by Chicago and Hangzhou BSSs (see S1

and S2 Datasets). In the two datasets, each trip records the user ID, the trip start and end time,

and the origin and destination stations. In the Chicago data, we only focus on regular subscrib-

ers of the system that form the majority of the users. Table 1 shows detailed descriptions of the

two datasets.

As shown in Fig 1(a), stations of both BSSs are usually located next to each other, forming a

certain spatial pattern. Also, it could be seen that the number of trips per day exhibits a mix of

regularity and uncertainty, as shown in Fig 1(b). For instance, the amount of trips of Hang-

zhou BSS is mostly stable, but could be occasionally small such as the amount of trips on the

day of 7th Oct, 2013. Because this was the last day of National Holiday in China, many tourists

were leaving Hangzhou city and many local customers were resting at home. This phenome-

non is called short-lived property of BSS that has been reported in the literature [13, 18]. In

Fig 1(c) and 1(d), we count the average number of trips on hourly basis in one day, and the

Table 1. Chicago data are public and released every two quarters. Hangzhou data are private and shared by the com-

pany of Hangzhou Public Bicycle System for research purpose only.

BSS Data set trip station

Chicago 2016 Q1-Q4 3,595,383 581

Hangzhou 2013 0809-1113 29,998,826 2974

https://doi.org/10.1371/journal.pone.0193795.t001

Fig 1. (a) Location information of the BSS stations; (b) number of trips per days; (c) average number of trips on hourly basis; and (d) average number of trips of each day

in a week.

https://doi.org/10.1371/journal.pone.0193795.g001
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average number of trips of each day in one week, respectively. It is observed that users in Chi-

cago like using the bike in workday and rush hours, indicating that those users may have

found usage of the BSS for home-workplace commutes. The average number of trips of Hang-

zhou BSS is relatively stable over days in one week, and have two peaks in the rush hours of

one day.

The community structure

In many real-world networks, it is common that some nodes in the network would be recog-

nized as hubs that either connect with many other nodes or contribute substantially to the

network activities. It is interesting that in the bike flow data from both cities, we didn’t iden-

tify significant hub stations that can account for the amount of bike flow traffic that is signifi-

cantly larger than average. To show that, we present the cumulative distribution functions

(CDFs) of the number of trips in the bike stations in Fig 2. It indicates that, to account for

80% of the total trip records, it took 36% of the stations for Chicago and 42% of the stations

for Hangzhou.

Although we didn’t discover significant hubs, we identified a community structure of the

stations [23, 24], i.e., showing a pattern that there are many bike flows within the stations in

the same cluster but less bike flows between stations in different clusters. Specifically, we used

the classical hierarchical clustering method to detect the community structure. Assume that

At ¼ ðat
ijÞ 2 R

N2

is the adjacent matrix of a BSS, where at
ijðt ¼ 1; . . . ;T) denotes the total

number of bike flows between the i-th and j-th stations in the t-th time epoch, T is the total

number of time epochs, and N is the number of stations. Also, denote the distance at the t-th

time epoch between the i-th and j-th stations as st
ij ¼ 1=at

ij. Based on the distance matrix

St ¼ ðst
ijÞ 2 R

N2

, we can construct the total distance matrix S ¼
PT

t¼1
St . By applying the

classical hierarchical clustering on S, the bike stations are grouped 15 and 40 communities for

Chicago and Hangzhou respectively in Fig 3. Note that the time interval in the paper is one

hour. Thus, T = 24 × 366 = 8,784 for Chicago BSS and T = 24 × 96 = 2,304 for Hangzhou BSS,

respectively.

(a) Chicago (b) Hangzhou

Fig 2. CDF of number of bike stations v.s. number of trips.

https://doi.org/10.1371/journal.pone.0193795.g002
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Aggregate bike flow (ABF) based on the community structure

Following the insight revealed by the community structure, we aggregate bike flows of the

stations on the basis of clusters and conduct further statistical analysis on the aggregated

bike flows (ABFs). Specifically, based on At, we define that Bt ¼ ðbt
klÞ 2 R

K2

where

bt
kl ¼

P
ija

t
ijIði 2 Ck; j 2 ClÞ; k; l ¼ 1; . . . ;K, K is the number of clusters, and I(i 2 Ck, j 2 Cl)

is the indicator function that equals to one only if the i-th station is in the k-th cluster

(denoted as Ck) and the j-th station is in the l-th community (denoted as Cl). Denote

~x t ¼ ðbt
11
; . . . ; bt

1K ; b
t
21
; . . . ; bt

2K ; . . . ; bt
KKÞ

>
2 RK2

, and X ¼ ð~x1; ~x2; . . . ; ~xTÞ
>
2 RT�P where

P = K2. The columns xp, p = 1, . . ., P of X are the time series of the p-th bike flow in a BSS

that is called aggregate bike flows(ABFs).

By applying PCA to X, a low intrinsic dimensionality of the ABFs could be found in both

BSS datasets, as shown in the scree plots in Fig 4. This indicates that a vast majority of the

temporal variability of the ABFs is contributed by the first few eigen-bike-flows (around 5),

which is much lower than the number of ABFs. As shown in Fig 5, we randomly select two

ABFs and show that the two ABFs can be sufficiently approximated by the top 5 eigen-bike-

flows. This observation could be generalized on all ABFs, as shown in Fig 6 that the relative

reconstruction errors (RRE) via the first k eigen-bike-flows decrease dramatically as k
increases, where RRE ¼ kX̂k� XkF=kXkF , kXkF ¼ ð

P
i;jX

2
ijÞ

1=2
and X̂k is denoted by Eq 8.

Taxonomy of the eigen-bike-flows

The aforementioned analysis of the ABF data emphasizes the central role of eigen-bike-flows

in understanding the ABFs. It seems that the eigen-bike-flows can be divided into two catego-

ries: deterministic eigen-bike-flows (d-flows) and spike eigen-bike-flows (s-flows). To show

this, randomly selected d-flows and s-flows from the two BSS data sets are shown in Figs 7 and

8. The d-flows in Fig 7 show periodic trends. These periodicities are reflected by the hourly

(rush hour and off-peek time) and diurnal (weekday and weekend) activities. On the other

hand, the s-flows in Fig 8 illustrate certain short-lived spikes, which may correspond to occa-

sional burst of usage due to holidays or particular weather conditions.

Fig 3. Community structures detected in both Chicago and Hanzhou bike flow data.

https://doi.org/10.1371/journal.pone.0193795.g003
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To detect the d-flows, we conduct Fourier analysis of the eigen-bike-flows. The fourth col-

umn of Fig 7 shows that the spectrum of the selected d-flows all exhibit a significant standalone

peak at twenty-four hours. To find the s-flows, the 5-sigma rule can be employed: whether

there is a point whose distance from the mean exceeds 5 times standard deviations. The cate-

gory of each eigen-bike-flow can be determined according to the criteria aforementioned.

However, there are eigen-bike-flows who belong to more than one category. To overcome this

contradiction, we define the d-flows as the eigen-bike-flows that have a significant standalone

peak in the spectrum regardless the existence of the spikes.

Statistical representational power of the eigen-bike-flows

As shown in the Method Section, each ABF can be reconstructed as a weighted sum of eigen-

bike-flows (e.g., see Eq 6). Particularly, each row of the principal matrix V specifies the extent

to which each eigen-bike-flow contributes to the corresponding ABF. Thus, we are interested

to examine the rows of V to discern the structure of the ABFs. Particularly, for an ABF, the

entries of the corresponding row of V whose magnitudes are remarkably larger than a thresh-

old indicate the significant eigen-bike-flows that constitute the ABF. Here, we set the threshold

as 1=
ffiffiffi
P
p

, i.e., this is because that, in an extreme situation that all the eigen-bike-flows contrib-

ute to one ABF equally, all the entries of the corresponding row of V will be 1=
ffiffiffi
P
p

due to the

unit norm constrain of the columns of V.

Furthermore, CDFs of the number of entries which exceed 1=
ffiffiffi
P
p

in their magnitudes are

shown in Fig 9. The figure indicates that overall each ABF only has a small set of constitutional

Fig 4. Scree plots for ABFs of Chicago and Hangzhou BSSs.

https://doi.org/10.1371/journal.pone.0193795.g004
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eigen-bike-flows. We further show the entries of V whose magnitudes exceed the threshold for

the two data sets in Fig 10, after the rows of V are sorted by the variance of their corresponding

ABFs. The top rows in each plot indicate the eigen-bike-flows that are significant in forming

the strongest ABFs, and the bottom rows show the significant eigen-bike-flows for the weakest

ABFs. Two interesting observations can be drew. First, from the vertical direction, the ele-

ments of one ABF are clustered in a small region. Second, from the horizontal direction, the

elements of the ABF with larger variance are mainly top eigen-bike-flows, while the ones with

smaller variance are mainly less significant eigen-bike-flows.

Temporal stability of the bike flow structure

It is of interest to see if the bike flow structure revealed in aforementioned sections could

remain stable over time. To examine its temporal stability, here, we divide the measurement

matrix X 2 RT�P into X1 2 R
T1�P and X2 2 R

T2�P where T = T1 + T2. Then, we apply PCA on

X1 and use the obtained eigen-structure to predict X2. Our rationale is that, if the eigen-struc-

ture learned from X1 is stable, then it could show significant prediction power for X2. Details

of how we could leverage the eigen-structure learned from X1 to predict X2 in shown in the

Section Methods. The performance of the one-step prediction of X2 is shown in Fig 11, which

shows the root mean square error (RMSE) per ABF in X2, while the ABFs are ordered with

decreasing variances from left to right and T1 = T2 = T/2. From Fig 11, it can be seen that the

eigen-structure learned from X1 could lead to accurate prediction of X2. Accurately forecasting

the ABFs will no doubt benefit many decision-makings for managing the BSSs such as station

Fig 5. Reconstructing two ABFs with 5 principal components. For presentational simplicity, we only exhibit 3 weeks of the ABFs data.

https://doi.org/10.1371/journal.pone.0193795.g005
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placement [14, 15] and bike reallocation [19, 20]. The commonly accepted approaches in bike

flow forecasting consider each ABF as a time series, and then, use some time series models

such as the Autoregressive Integrated Moving Average (ARIMA for short) method [25] to pre-

dict the bike flows. Here, Fig 11 also shows that the performance of the PCA-based prediction

model is better than ARIMA model for most ABFs of X2.

Discussion

The emerging bike sharing systems provide a new data source for us to understand human

mobility. A unique value of this new data, comparing with existing mobility datasets such as

GPS trajectory [6–8] and mobile phone data [3, 9, 10], lies on its characterization of human

mobiliy in short-distance trips. Thus, as a deep understanding of the population on short-dis-

tance trip is currently lacking, we conduct a systematic analysis of the bike flow data collected

in two major cities in the United States and China. Understanding the statistical characteristics

of bike flow data holds great potential to develop informed decision-makings for better traffic

prediction, infrastructure design such as station placement, real-time bike reallocation, and

inventory management.

By analyzing the bike flow datasets from the two cities, we found statistical regularities

underlying the irregular surface of the bike flow data. Our basic approach is inspired by the

recognition of the spatial organizing principles of the bike flow, such that stations could be

first clustered into distinct clusters. Then, by using PCA to analyze the aggregated bike flow

data on the cluster level, we could identify a taxonomy of constituting eigen-flows that

Fig 6. Relative reconstruction errors via the first k = 1, 2, . . ., 10 eigen-bike-flows.

https://doi.org/10.1371/journal.pone.0193795.g006
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correspond to routine and outburst in the bike flow, i.e., (i) deterministic eigen-bike-flows,

which capture the periodic trends that have been reported in previous works of other bike flow

data of similar nature [13, 18]; (ii) spike eigen-bike-flows, which capture the occasional short-

lived bursts [13, 18] in BSSs. Besides the interpretability of the eigen-flows, we also find out

that with a small set of eigen-flows, the ABFs could be accurately reconstructed, demonstrating

their statistical significance and efficiency. We further study the temporal stability of the eigen-

structure by using it to predict on unseen bike flow. Thus, although irregularity could be

observed from the surface of the data, regularity emerges when looking into the spatial struc-

ture embedded in data. Further, on top of the spatial structure, temporal regularity could also

be detected. On what level we should interrogate the data and ask what questions seems to be a

crucial precondition for us to properly understand the data and translate that understanding

into better decision makings.

Fig 7. The first three columns are the examples of d-flows. The fourth column is the periodograms of d-flows. The x-axis of periodograms indicates their periods.

https://doi.org/10.1371/journal.pone.0193795.g007
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In contrast to some popular assumptions made in some operations research and manage-

ment methods for BSS that emphasize statistical simplicity and homogeneity, our analysis

reveals far more intrinsic structures, heterogeneous patterns, and statistical complexities in

both spatial and temporal scales in the bike flow data. Thus, our study anticipates further

development of more realistic operations research and management methods which could

optimize their performances to account for the unique statistical characteristics embedded in

the BSS data. On the other hand, comparing with other existing works that used the bike flow

data, we notice that most of the existing works largely focus on prediction using the bike flow

data rather than inquiring the data for extracting system-level statistical patterns. Probably

because of this, none of them aimed to conduct a delicate analysis of the variation structure in

the bike flow data. One exception [13] in these prediction works exploited the idea of first

Fig 8. Examples of s-flows.

https://doi.org/10.1371/journal.pone.0193795.g008

Human mobility in emerging Bicycle Sharing Systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0193795 March 15, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0193795.g008
https://doi.org/10.1371/journal.pone.0193795


spatially clustering the stations, and then, predicting on the combined bike flows very much

like the ABF in our paper. While this study showed positive evidences to backup our finding, it

was motivated by gaining prediction accuracy rather than a systematic revelation of the spatial

structure and temporal eigen-structure in our paper.

Fig 9. Number of eigen-bike-flows that constitute each ABF.

https://doi.org/10.1371/journal.pone.0193795.g009

Fig 10. Indices of the eigen-bike-flows constituting each ABF. Note that the x-axis is the eigen-bike-flow index that are

organized by convention in decreasing order of the singular values, and y-axis is ordered according to the decreasing

ABF rate as well.

https://doi.org/10.1371/journal.pone.0193795.g010
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In summery, this paper is, to the best of our knowledge, the first attempt to comprehen-

sively investigate the human mobility patterns in short-distance trips, characterized by their

manifestation on bike sharing systems. Consistent patterns have been discovered from data-

sets collected in two major cities in the US and China, implying that these patterns may rep-

resent universal conditions that shape the bike flow activities in real-world. This study has

limitations. First, the methods used in this study, the classic hierarchical clustering and PCA

methods, reveal interesting structures but also impose limitations on the structures they

could identify. Particularly, as shown in the taxonomy of the eigen-bike-flows, some d-flows

contain both periodic trends and spikes. This indicates the limitations of PCA and suggests

that methods that can clearly separate the underlying signals could reveal further structures

in the data. Second, while PCA is useful in analyzing the ABFs, more delicate time series

analysis tools or signal processing methods could be used to study the dynamics embedded

in the time series data. Last but not least, the two datasets used in this study may not fully

present the complexity of the BSS data in other cities. While the observations made in this

study are interesting and inspiring, this study lays the foundation for further inquiries such

as traffic prediction, infrastructure design such as station placement, real-time bike realloca-

tion, and inventory management.

Methods

Principle component analysis

PCA, as an unsupervised statistical learning method for studying the underlying structure in

complex data, has been used for coordinate transformation and dimension reduction tasks

[26, 27]. It maps the original data onto a new set of axes via coordinate transformation. The

new axes are referred to principal components that point to the directions with the largest vari-

ance or energy in the data. Under the assumption that the most important structure exists

along the new coordinate with the largest variance, the first few principal components may

well capture the concerned structure in complex data. Due to the superiority of PCA, it has

been widely used in many scientific fields, such as eigenfaces for recognition [28], network

traffic analysis [29] and human mobility modeling [30].

Fig 11. RMSE of each ABF to show the performance of ARIMA and PCA models. Note that the ABFs are ordered with decreasing variances from left

to right. Furthermore, we did the Kolmogorov–Smirnov test between RMSE of ARIMA and PCA models. The p-values are all significantly less than

0.05 for Hangzhou and Chicago BSS respectively.

https://doi.org/10.1371/journal.pone.0193795.g011
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Let X 2 RT�P be the measurement matrix. The p-th column denotes the p-th ABF and the

t-th row represents an instance of all the ABFs at time t. Deriving the principal components is

to solve the eigen-decomposition problem for matrix X>X, because X>X measures the covari-

ance between ABFs. The mathematical formulation is

X>Xvp ¼ lpvp; p ¼ 1; . . . ; P ð1Þ

where λp is the p-th eigenvalue corresponding to eigenvector vp. Since X>X is symmetric

and semidefinite, its eigenvectors fvpg
P
p¼1

are orthogonal and the corresponding eigenvalues

flpg
P
p¼1

are nonnegative. It is required that the eigenvectors fvpg
P
p¼1

have unit norm. Also, the

eigenvalues are arranged from largest to smallest, i.e., λ1� λ2� . . .� λP� 0. If eigenvalues

flpg
P
p¼1

have r nonzero values, then the rank of X is r. It is well known that fvpg
r
p¼1

are the

principal components of X. According to (1),

X>X ¼ VLV>; ð2Þ

where V = [v1, . . ., vr] and Λ = diag(λ1, . . ., λr). Calculating principal components actually is

intimately related to Singular Value Decomposition (SVD) [31]. SVD is matrix decomposition

tool that can be expressed in the form of matrix multiplication as

X ¼ USV> ð3Þ

where U = [u1, . . ., ur], u>i uj ¼ 0 for i 6¼ j and S = diag(σ1, . . ., σr) is an r × r diagonal matrix

with singular values fspg
r
p¼1

on the diagonal. Therefore,

X>X ¼ VS2V>: ð4Þ

Comparing with (2), we find that lp ¼ s2
p. Furthermore, based on (3), it has

up ¼ Xvp=sp; p ¼ 1; . . . ; r; ð5Þ

and

xp ¼ spUðV
>Þp; p ¼ 1; . . . ; P; ð6Þ

where up, p = 1, . . ., r are vectors of size T and orthogonal by construction, and (V>)p is the p-

th row of V. The Eq (5) indicates that all the ABFs can be transformed into a new coordinate

with weights vp. up captures the temporal variation common to all flows along principal axis p.

Specifically, u1 captures the strongest temporal trend common to all ABFs, u2 captures the sec-

ond strongest, and so on so forth. The Eq (6) shows that each ABF is in turn a linear combina-

tion of the eigen-bike-flows, weighted by (V>)p.

Using SVD, a low-rank approximation matrix of X can be constructed as follows. The

approximation form is

X̂ k ¼ UkSkV
>

k ð7Þ

where X̂k is an approximation of X with rank k< r, Uk and Vk are the first k columns of U and

V, respectively, and Sk is the top-left part of S of size k. The low-rank approximation of X is

actually a dimension reduction approach via PCA with the form

X̂ k ¼
Xk

p¼1

spupv
>

p : ð8Þ
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Prediction of bike flow

By assuming temporal stability of the bike flow data, we could leverage the eigen-structure

revealed in a previous data, denoted as X1, to predict the data in next, denoted as X2. Accord-

ing to SVD, X1 ¼ U1S1V
>

1
where each column of U1 is an eigen-bike-flow and each column of

V1 is a principal component of X1. We denote that Ud
1

as the d-flows of X1 which have periodic

trends. Therefore, we can apply the ARIMA model on each column of Ud
1

to predict the esti-

mated d-flows of X̂d
2
. Then, based on the temporal stability assumption of the principal com-

ponents, the estimation of X̂2 can be constructed by

X̂ 2 ¼ Ûd
2
SdðVd

1
Þ
>

ð9Þ

where Sd and Vd
1

are sub-matrices of S and V, respectively, that correspond to the d-flows in

X1. The prediction performance could be evaluated by RMSE. Here, the RMSE is defined as

RMSEi ¼ 1=
ffiffiffiffiffi
T2

p
kXi

2
� X̂ i

2
k; i ¼ 1; . . . ; d ð10Þ

where T2 is the number of rows in X2, d is the number of d-flows, Xi
2

and X̂ i
2

are the i-th col-

umns of X2 and X̂2 respectively.

Supporting information

S1 Dataset. BSS data of Chicago.
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S2 Dataset. BSS data of Hangzhou.
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